Scala Essential Training
with Margaret Fisher

Lynda.com’

FROM LINKEDIN

Scala Reference Guide

Packages

import scala.collection._

import scala.collection.Vector specific import for the Vector class

import scala.collection.{Vector, Sequence} import multiple classes

package pkgname declare a package

Operators

x op Yy is x.op(y) infix notation where op can be +, -, *, /, %
x op is x.op() postfix notation

X==y compares two objects (calls equals method)

There is no ++, -- in Scala

Symbols

->

<-

/!

optional end of line
returns a two element tuple for a key, value pair
assign to in a for comprehension
used in function literals to separate arguments from the function body
cons operator

single-line comment

/*.. % multiline comment

Relational Operators

I or

&& and

! not

Comparison

== equals

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Scala Essential Training with Margaret Fisher

wildcard to import everything from the collection library

Lynda.com’

FROM LINKEDIN

1of4

Lambda Expression

(x:Int) => x * x anonymous function to square x
(1 to 5).map(2* _) anonymous function using bound infix method, multiplies 1,2,3,4,5 by 2
val x = (1 to 5).map {2 * _ multiplies each value by 2
printin(x) print x
x } returns x (Vector (2, 4, 6, 8, 10)
(1 to 10) filter { _ % 2==0} only returns even numbers; creates vector (2, 4, 6, 8, 10)
(1 to 10) filter { _ % 2==0} map { _ * 2} multiplies all even values by 2; creates vector (4, 8, 12, 16, 20)
Variables
var creates a mutable variable
var myVar:Int creates a mutable integer variable
val creates an immutable variable
val myVal:String creates an immutable String variable (or val myVal = “Monday”)
Data Types Any
Byte / \
Short AnyVal . AnyRef
Int \ Unit / \
Long | (Scala collections) (Other Scala classes)
Float SI0Gops (all java dlasses)
Double ~{(__Char \ /
Boolean Boolean \
String - Byte T / ’
Char
Unit ‘\‘iﬁring/‘/'
Null <+ Subiype
Nothing < Implicit Conversion
Any
AnyRef
Scala Essential Training with Margaret Fisher Lynda.com’

FROM LINKEDIN

Functions

def f(x:Int) = {.. .} define function f, with parameter x, an integer; no return type specified
def times3(x:Int) = 3 * x

val f = (x:Int) => 3 * x anonymous function call

def message(x:Int){ //function returns unit since it has no = sign; prints Hello world x times
for(i<-(1 to x)) printIn(“Hello World") }

def message(x:String, intro:String ="Dear”) { //use a default value for intro

printin(intro + “,” + x) }

def f(x: R) call by value
def f(x: => R) call by name (reference)
def sum(xs:Int*):Int = { /lreturn type required for recursive functions

// * indicates variable number of args
varr =0
for(x <- xs) r += x
r}
def sum(xs:Int*):Int = //same results as above

if(xs.length == 0) 0 else xs.head + sum(xs.tail : _*)

Data Structures
(1,2,3) tuple literal
var(a,b,c) = (1,2,3) tuple unpacking via pattern matching

var xs = List(1,2,3) creates an immutable list called xs

xs(0) access the element at location zero, indexing
4::List(3,2,1) adds 4 to the front of the list creating List(4,3,2,1)

1to 10 range of numbers from 1 to 10 inclusive

1 until 10 range of numbers from 1 to 9, excludes upper bound

val list = List.range(1,11) creates a List of values excluding the upper bounds

Scala Essential Training with Margaret Fisher Lyndacom

\\\\\\\\\\\\

Decision Statements

If(expr that evaluates to true/false) printIn(“true”) else println(“false”)

Loops

while(expr) {...} execute a body of code while the expr is true

dof...} while(expr) execute a body of code at least once, continue while expr is true
for(x <- myList) printin(x) print all values of x from the List called myList

for(x <- myList if xX%2 == 0) yield x*10 for comprehension

for(x <- 1to0 10){...}

Pattern Matching

val x = r match {

case ‘0" => ... //match a value

case ch if someProperty(ch) => ... //add a guard to the match criteria

case e: Employee => ... //match runtime type

case (xy) => ... //destructures pairs

case Some(v) => ... //case classes have extractors

case 0 :: tail => ... //infix notation for extractors yielding a pair
case _ => ... //default case

Escape Sequences

\b backspace

\t tab

\n newline

\r carriage return
\’ double quote
\ single quote

\ backslash

Scala Essential Training with Margaret Fisher

\\\\\\\\\\\\

